A level-set method for imaging salt structures using gravity data
نویسندگان
چکیده
We present a level-set method for the inverse gravimetry problem of imaging salt structures with density contrast reversal. Under such a circumstance, a part of the salt structure contributes two completely opposite anomalies that counteract with each other, making itself unobservable to the gravity data. As a consequence, this amplifies inherent non-uniqueness of the inverse gravimetry problem so that it is much more challenging to recover the whole salt structure from the gravity data. To alleviate the severe non-uniqueness, it is reasonable to assume that density contrast between the salt structure and the surrounding sedimentary host depends upon the depth only and is known a priori. Consequently, the original inverse gravity problem reduces to a domain inverse problem, where the supporting domain of the salt body becomes the only unknown. We use a level-set function to parametrize the boundary of the salt body so that we reformulate the domain inverse problem into a nonlinear optimization problem for the level-set function, which is further solved for by a gradient descent method. Both 2-D and 3-D experiments on the SEG/EAGE salt model are carried out to demonstrate the effectiveness and efficiency of the new method. The
منابع مشابه
Subsurface modeling of mud volcanoes, using density model and analysis of seismic velocity
Detection of subsurface structures by means of gravity method can be used to determine mass distribution and density contrast of rock units. This distribution could be detected by different geophysical methods, especially gravity method. However, gravity techniques have some drawbacks and can't be always successful in distinguishing subsurface structures. Performance of the gravity technique co...
متن کاملInverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method
In this paper, modular neural network (MNN) inversion has been applied for the parameters approximation of the gravity anomaly causative target. The trained neural network is used for estimating the amplitude coefficient and depths to the top and bottom of a finite vertical cylinder source. The results of the applied neural network method are compared with the results of the least-squares stand...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کاملFault Strike Detection Using Satellite Gravity Data Decomposition by Discrete Wavelets: A Case Study from Iran
Estimating the gravity anomaly causative bodies boundary can facilitate the gravity field interpretation. In this paper, 2D discrete wavelet transform (DWT) is employed as a method to delineate the boundary of the gravity anomaly sources. Hence, the GRACE’ satellite gravity data is decomposed using DWT. DWT decomposites a single approximation coefficients into four distinct components: the appr...
متن کاملTOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...
متن کامل